Abstract

The self-assembly, the molecular dynamics, and the kinetics of structure formation are studied in dipole-functionalized hexabenzocoronene (HBC) derivatives. Dipole substitution destabilizes the columnar crystalline phase except for the dimethoxy- and monoethynyl-substituted HBCs that undergo a reversible transformation to the crystalline phase. The disk dynamics are studied by dielectric spectroscopy and site-specific NMR techniques that provide both the time-scale and geometry of motion. Application of pressure results in the thermodynamic phase diagram that shows increasing stability of the crystalline phase at elevated pressures. Long-lived metastability was found during the transformation between the two phases. These results suggest new thermodynamic and kinetic pathways that favor the phase with the highest charge carrier mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.