Abstract

The self-assembly behavior of mixed solutions consisting of poly(isoprene-b-ethylene oxide) (IEO) copolymer micelles and vesicle-forming didodecyldimethylammonium bromide (DDAB) was investigated. Dynamic light scattering indicated the presence of two populations of nanoassemblies in the solutions. By aid of atomic force microscopy, the larger ones were identified as block copolymer modified surfactant vesicles (BCMSVs) and the smaller ones as surfactant-modified block copolymer micelles (SMBCMs). This identification is based on the amphiphilic character of the low and high molecular weight molecules and the notion that exchange of unimers of both types can take place between the initial nanoassemblies in aqueous solution. Electrophoretic light scattering experiments showed that the nanostructures carry positive charges originating from the surfactant. The sizes of the nanoassemblies depend on the relative concentrations of both components. The behavior of the mixed systems was also found to depend on block copolymer composition and temperature. Nanoassemblies of smaller sizes were formed at higher temperatures. BCMSVs and SMBCMs are thermosensitive, in contrast to the temperature stability of pure block copolymer micelles. On the other hand, BCMSVs showed lesser sensitivity to temperature increase compared to the pure DDAB vesicles. This indicates that incorporation of macromolecules into the DDAB bilayer increases the stability of the vesicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call