Abstract
Low-cost and eco-friendly CuI hybrid compounds with various structures have recently attracted increasing attention due to their excellent optical properties and promising phosphor applications. However, the poor solubility and solution processability of bulk powders with agglomerated particle limited their practical applications greatly. In this work, we reported the self-assembly formation of CuI hybrid micron phosphors via the aqueous PVP micelle-assisted assembly route. Seven CuI hybrid micron phosphors with the emission from blue 450 nm to red 636 nm have been successfully synthesized. Among them, CuI-pyridine hybrid micron phosphors can be obtained via the reaction of CuI with various pyridines. PVP limits the size growth of the phosphors efficiently and it also plays an important role in controlling the distinct crystal phase formation. Whereas, micron phosphors based on bidentate ligands including 2-propylpyrazine, 5-bromopyrimidine or 4,4′-bipyridine need to be prepared via ligand exchange reaction. The micron phosphors present excellent stability in water and can be dispersed in the aqueous solution of PVP or PVA to form homogenous luminescent composites. The luminescent composites based on PVP are easy to use for fabricating anti-counterfeiting patterns via brush-painting or screen-printing. On the other hand, PVA composites can be applied for preparing free standing monochromatic or multichromatic emitting films as color convertor for display backlight. The PVA composites also exhibit the promising phosphor application for light-emitting diode (LED). Especially, the white LED can be directly realized via optimizing the mixing ratio of blue and orange phosphors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.