Abstract

The engineering of two-dimensional crystals by physisorption-based molecular self-assembly at the liquid-solid interface is a powerful method to functionalize and nanostructure surfaces. The formation of high-symmetry networks from low-symmetry building blocks is a particularly important target. Alkylated isophthalic acid (ISA) derivatives are early test systems, and it was demonstrated that to produce a so-called porous hexagonal packing of plane group p6, i.e., a regular array of nanowells, either short alkyl chains or the introduction of bulky groups within the chains were mandatory. After all, the van der Waals interactions between adjacent alkyl chains or alkyl chains and the surface would dominate the ideal hydrogen bonding between the carboxyl groups, and therefore, a close-packed lamella structure (plane group p2) was uniquely observed. In this contribution, we show two versatile approaches to circumvent this problem, which are based on well-known principles: the "concentration in control" and the "guest-induced transformation" methods. The successful application of these methods makes ISA suitable building blocks to engineer a porous pattern, in which the distance between the pores can be tuned with nanometer precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.