Abstract

Three novel series of amphiphiles based on poly(amidoamine) dendrons (from G1 to G3) and having different aromatic chromophores (Cz I, Cz II, and Py) at the focal point were synthesized and studied for their self-assembly behavior in aqueous solution by using electronic microscopies (i.e., SEM and TEM), UV–vis, fluorescence, IR, and 1H NMR spectroscopy. It was found that the generation of dendrons affected significantly the self-assembly of these amphiphiles in aqueous solution and the morphological structures of the resulting assemblies depended greatly on the architecture of the focal chromophores. As a result, the first generation of dendrons assembled readily into vesicles at low concentrations. These vesicular structures subsequently fused to form a stable tubular structure. Similar tubular structures could also be directly obtained through self-assembly of these amphiphilic dendrons at high concentrations. X-ray investigations showed that the resulting tubules possessed a lamellar structure. A head-to-head packing model of amphiphilic dendrons in the assemblies was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.