Abstract

AbstractAmphiphilic resorcinarene‐based multiwalled microtubes, millimetres in diameter and centimetres in length, are generated in water. The thickness of the tube wall approaches 300 nm. Their self‐assembly properties are investigated using transmission electron microscopy, scanning electron microscopy, atomic‐force microscopy, dynamic light scattering, X‐ray diffraction, UV‐vis spectra, and Fourier transform IR techniques. From these studies, the structures critical for the self‐assembly of resorcinarene into microtubes in aqueous media are determined. Furthermore, the study manifests a feasible method that aims to completely change the structure from a microtube to a sheet‐like morphology by selectively eliminating key groups. Subsequently, resorcinarene‐capped water‐soluble gold nanoparticles (AuNPs) are fabricated. By utilizing the obtained microtubes as a template, a gold/organic microtubular composite is successfully prepared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call