Abstract

Weak C-H···X hydrogen bonds are important stabilizing forces in crystal engineering and anion recognition in solution. In contrast, their quantitative influence on the stabilization of supramolecular polymers or gels has thus far remained unexplored. Herein, we report an oligophenyleneethynylene (OPE)-based amphiphilic Pt(II) complex that forms supramolecular polymeric structures in aqueous and polar media driven by π-π and different weak C-H···X (X=Cl, O) interactions involving chlorine atoms attached to the Pt(II) centers as well as oxygen atoms and polarized methylene groups belonging to the peripheral glycol chains. A collection of experimental techniques (UV/Vis, 1D and 2D NMR, DLS, AFM, SEM, and X-Ray diffraction) demonstrate that the interplay between different weak noncovalent interactions leads to the cooperative formation of self-assembled structures of high aspect ratio and gels in which the molecular arrangement is maintained in the crystalline state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.