Abstract

The self-assembling process of unsubstituted resorcinarenes (1, 2 and 3) to dimeric capsules encapsulating small tetra-alkyl ammonium cations 4–7 has been studied in solid and gaseous states by X-ray crystallographic and mass spectrometric methods. Hydrogen bonding and cation-π interaction as well as the proper encapsulation in the empty cavity of the capsule appear to be the most important interactions in the capsule formation process. Competitive mass spectrometric studies clearly indicated preference of the tetramethyl ammonium cation (4) over tetraethyl ammonium cation (6) and especially tetrabutyl ammonium cation (7). The crystal structures of altogether eight dimeric capsules of resorcinarenes 1–3 with cations 4 and 5 were determined. In the solid state, the alkyl chain length of the host affects the crystal packing significantly. However, ethyl resorcinarene (2) is the only host, which binds the spherical halide anion (Cl− or Br−) in between the lower rim alkyl chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.