Abstract

Nanomedicine has developed as a potential technique for successful cancer therapy. A simple supramolecular self-assembly process is a helpful strategy for generating carrier-free nanodrugs. Mixing photodynamic treatment with chemotherapy has been sought to obtain a high therapeutic impact. In this study, we effectively construct a nanocarrier (CD-Por-PEG: Ada-CPT-Pt(IV)) combined with Carboplatin prodrug (Ada-CPT-Pt(IV)) and photosensitizer porphyrin (CD-Por-PEG) by host-guest interactions to accomplish stimuli-response combination treatment. Supported by greater spatial control of the binding ratio among host-guest molecules, Carboplatin and porphyrin were independently altered with β-cyclodextrin and adamantane to produce the amphiphilic host-guest combination for sequential self-assembly into therapeutic nanoparticles. The colloidal stability of the produced CD-Por-PEG: Ada-CPT-Pt(IV)-NPs was excellent, with an average hydrodynamic diameter of ∼170 nm. The microscopy images showed that CD-Por-PEG: Ada-CPT-Pt(IV) could aggregate cells and generate ROS after light irradiation (630 nm). Monotherapy had a cytotoxicity three times greater than the CD-Por-PEG: Ada-CPT-Pt(IV) nanoparticles. Studies in mice carrying SUNE1 nasopharyngeal tumours showed that nanoparticles effectively suppressed tumour development without causing systemic damage in this examination. The current self-assembly nanosystem makes precise control over the photosensitizer and drug loading possible ratio. It reduces the systemic adverse toxicity issues of drugs carrier, making this system ideal for nasopharyngeal cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.