Abstract

Aqueous dispersions of double-chain phospholipids spontaneously assemble into closed bilayers called vesicles (or liposomes). Although the vesicles are in general topologically spherical, cylindrical and helical liposomes have sometimes been observed. We present here video-enhanced microscopic studies of a diacetylenic phospholipid dispersed in ethanol/water, which reveal the existence of unusual bilayer morphologies. On cooling the dispersion from the isotropic phase, we have observed the formation of long (of the order of hundreds of micrometres), thin (0.2-2 microns) filaments, which fluctuate strongly. When the temperature is decreased further, the filaments rapidly retract into a mass of lipid. At constant temperature, on the other hand, the filaments transform into torus or ring-like vesicles. Such non-spherical structures have been predicted theoretically but not previously observed experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.