Abstract

The synthesis of peptide−polymer conjugates comprising (d-alt-l)-cyclopeptides as aggregator domains and their self-assembly into tubelike structures is described. By coupling two well-defined poly(n-butyl acrylate) blocks to opposite sides of a preformed cyclic (d-alt-l)-α-octapeptide, a coil−ring−coil bioconjugate was accessed. The applied solution-phase coupling route allowed a multigram scale synthesis of the conjugate and assured both a controlled synthesis and ease of analysis. The controlled self-assembly of the conjugate leads to uniform tube structures. Atomic force microscopy (AFM) of these aggregates deposited on mica revealed a height of 1.4 ± 0.2 nm, a width of 5 nm, and roughly estimated lengths of up to 200−300 nm. A model is proposed, explaining the structure dimensions. This includes the formation of a tubular peptide core build via stacking of the cyclopeptides and a poly(n-butyl acrylate) shell wrapping around the peptide tube. The model is consistent with infrared spectroscopy and elec...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.