Abstract
Abstract Formation of a skeleton composed of a fractal condensed matter was suggested [A.B. Kukushkin, V.A. Rantsev-Kartinov, in: Proceedings of the 17th IAEA Fusion Energy Conference, vol. 3, Yokohama, Japan, 1998, pp. 1131–1134, http://www.iaea.org/programmes/ripc/physics/pdf/ifp_17.pdf ] to explain unexpected longevity of filamentary structures observed in laboratory electric discharges. A simple 3D model [A.B. Kukushkin, K.V. Cherepanov, physics/0512234 ] of many-body system of magnetized, electrically conducting thin rods (1D magnetic dipoles) managed to describe the integrity of a hypothetical, “manually-assembled” tubular skeleton under the action of external forces. Here we demonstrate the possibility of electrodynamic self-assembling of coaxial tubular skeleton in a system of ∼500 magnetic dipoles, which are initially arranged as 25–50 linear electric current filaments with a fraction of the dipoles with uncompensated magnetic flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.