Abstract

The conjugates of porphyrin with links to the acyclic penta- and heptapeptides were synthesized to mimic natural multiple porphyrin systems. The linear penta- and heptapeptide with hydrophilic/hydrophobic alternative sequences took a random structure in aqueous trifluoroethanol (TFE). However, these polypeptides took a beta-sheet structure in the same solvent when the N-terminal Cys linked to the porphyrin, suggesting that the conjugates self-assembled via the intermolecular hydrophobic interaction between the porphyrins. The circular dichroism (CD) spectra, UV/vis spectra, size exclusion chromatography (SEC), and (1)H NMR spectroscopy supported the self-assembling. In the self-assembled structure of the pentapeptide linking porphyrin at the p-phenyl position (9), the porphyrins were involved in two porphyrin-porphyrin interactions, i.e., the side-by-side interaction between the neighboring polypeptide chains and the face-to-face interaction between the first and the third peptide chains. The CD spectra of 9 showed two sets of Cotton effects probably arising from these two interactions. The UV/vis spectra also supported the above interpretation, showing multiple absorptions in the longwave and shortwave shifted regions. The SEC analyses showed the assembled structure of the conjugates. The (1)H NMR signals of the porphyrin rings of 9 were hardly observed in D(2)O-CD(3)OD because of the shortened spin-spin relaxation time T(2)().

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.