Abstract

Compared to conventionally synthesized organic compounds, peptides with amphiphiles have unique advantages, especially in self-assembly. Herein, we reported a peptide-based molecule rationally designed for the visual detection of copper ions (Cu2+) in multiple modes. The peptide exhibited excellent stability, high luminescence efficiency, and environmentally responsive molecular self-assembly in water. In the presence of Cu2+, the peptide undergoes an ionic coordination interaction and a coordination-driven self-assembly process that leads to the quenching of fluorescence and the formation of aggregates. Therefore, the concentration of Cu2+ can be determined by the residual fluorescence intensity and the color difference between peptide and competing chromogenic agents before and after Cu2+ incorporation. More importantly, this variation in fluorescence and color can be presented visually, thus allowing qualitative and quantitative analysis of Cu2+ based on the naked eye and smartphones. Overall, our study not only extends the application of self-assembling peptides but also provides a universal method for dual-mode visual detection of Cu2+, which would significantly promote point-of-care testing (POCT) of metal ions in pharmaceuticals, food, and drinking water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.