Abstract

Celastrol, extracted from Tripterygium wilfordii Hook F, is one of the most promising natural extract for cancer treatment. Nevertheless, insufficient tumor retention and severe systemic toxicity still hinder its application. Herein, we report for the first time that Celastrol can directly self-assemble into size-controllable nanoparticles through the anti-solvent method by using different good solvent or by the variation of Celastrol concentrations. In vitro anti-cancer experiment revealed that the as-prepared nanoparticles can kill MCF-7 cells more effectively. Moreover, the nanoparticles can efficiently accumulate in tumors of the tumor bearing mice after tail vein injection. Under the administration of lethal dosage of Celastrol, the tumors are greatly suppressed and the mice maintain the activity. These results demonstrate that anti-solvent method may be a promising strategy to fabricate Celastrol nano-drugs with controllable size and less systemic toxicity for further clinical cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call