Abstract

Complex materials with micron-scale dimensions and nanometre-scale feature resolution created via engineered DNA self-assembly represent an important new class of soft matter. These assemblies are increasingly being exploited as templates for the programmed assembly of functional inorganic materials that have not conventionally lent themselves to organization by molecular recognition processes. The current challenge is to apply these bioinspired DNA templates toward the fabrication of composite materials for use in electronics, photonics, and other fields of technology. This highlight focuses on methods we consider most useful for integration of DNA templated structures into functional composite nanomaterials, particularly, organization of preformed nanoparticles and metallization procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.