Abstract

In this research, the self-assembly behaviors of two different symmetry carboxylic acid derivatives (H3BTE and H4BTE) regulated by solvent and guest molecule (coronene, COR) were explored at the liquid/solid interface by scanning tunneling microscopy, and the formation mechanism was investigated by density functional theory. In 1-phenyloctane, only H3BTE molecules dissolved with extremely low concentration and self-assembled into a honeycomb structure and a new strip structure, while H4BTE could not. In 1-heptanoic acid, H3BTE and H4BTE were easily dissolved, in which H3BTE formed a regular row structure and H4BTE formed a tetragonal structure, respectively. The host-guest interaction was investigated by introducing the COR molecules into their self-assembly structures, and due to the different symmetry, H3BTE and H4BTE displayed different accommodation behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.