Abstract

In this study, a 3D surface-folded composite was prepared in situ as a hydrazine sensor by loading a hybrid film of CoNi-layered double hydroxides (LDHs) with nitrogen-doped carbon dots on self-assembled ZnO microspheres. The nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), and the electrochemical behavior of the sensors was investigated by cyclic voltammetry (CV), amperometry and electrochemical impedance spectroscopy (EIS). The results showed that ZnO microspheres with nitrogen-doped carbon dots strongly coupled with LDHs can significantly reduce the charge transfer resistance, accelerate the oxidation kinetics of hydrazine, and effectively increase the electrochemically active surface area (ECSA). The sensor achieved ultra-sensitive (13 040 μA mM-1 cm-2 (S/N = 3)) detection of hydrazine in the concentration range of 0.7 μM to 4 mM, exhibited excellent selectivity, reproducibility and high stability, and was successfully applied to the determination of hydrazine in actual environmental water samples and landfill leachate samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call