Abstract

This paper describes the construction of three dimensional (3D) encapsulation devices in large numbers, using a novel self-assembling strategy characterized by high mechanical stability, controlled porosity, extreme miniaturization, high reproducibility and the possibility of integrating sensing and actuating electromechanical modules. We demonstrated encapsulation of microbeads and cells within the containers, thereby demonstrating one possible application in cell encapsulation therapy. Magnetic resonance (MR) images of the containers in fluidic media suggest radio frequency (RF) shielding and a susceptibility effect, providing characteristic hypointensity within the container, thereby allowing the containers to be easily detected. This demonstration is the first step toward the design of 3D, micropatterned, non-invasively trackable, encapsulation devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.