Abstract

In this study, silver nanoparticles (AgNPs) are self-assembled onto the polyamide (PA) pore array through hydrogen bonding, resulting in and optimizing the PA/Ag 3D pore array substrates. The best surface-enhanced Raman scattering (SERS) substrate is obtained with a pore depth of 500 nm in the PA array, 30 nm AgNPs, at a pH of 5.0, and a 24 h assembly time. The SERS performance of the substrates is assessed using rhodamine 6G (R6G) as a probe molecule. The detection limit of the R6G molecule reaches 10-13 M, and the relative standard deviation is under 20%, indicating good enhancement ability and reproducibility. Furthermore, label-free detection of pesticide contaminant diquat with a detection limit of 2.69 × 10-9 M is achieved using the optimized 3D substrate, which meets environmental monitoring requirements for drinking water. The findings demonstrate that this 3D SERS substrate has promising potential for use and development in the fields of contaminant detection and chemical sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.