Abstract
Abstract The advancement of micro and nanotechnology has led to the manufacturing of miniaturized sensors with improved functionalities for highly sensitive point of care devices. This work is particularly focused on analysing cancer cells and the effect of a model drug on their survival rate. To that end, we developed a highly sensitive rolled-up micro-electrochemical impedance spectroscopy sensor, encapsulated into a microfluidic channel. The sensor was built by strain engineering of shapeable materials and with diameters close to the cell size to improve their sensitivity. To demonstrate the platform performance, we first carried out measurements with different electrode geometries using cell medium at different concentrations. We also performed measurements using cancer cell suspensions, obtaining distinct signals from single cells, cell clusters and cellular debris. Finally, cancer cells were treated with an anticancer drug (Camptothecin), at different concentrations, over the same period, and further analysed using the developed platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.