Abstract

Gold-based nanomaterials have attracted extensive interest for potential application in photothermal therapy (PTT) owing to their distinctive properties including high photothermal transduction, biocompatibility, and low cytotoxicity. Herein, assembled gold nanoparticle architecture-based photothermal conversion agents were synthesized by using polysaccharides (alginate dialdehyde, ADA) as both the cross-linker to induce self-assembly of diphenylalanine (FF) and the reducer for in situ reduction of Au3+ ions into Au nanoparticles (Au NPs). The extinction spectrum of the obtained self-assembled ADA–FF/Au nanospheres was finely modulated into a near-infrared region by controlling the growth of Au NPs inside the assemblies. The strong plasmonic coupling effect of the assembled Au NPs also leads to high photothermal conversion (η = 40%) of the ADA–FF/Au nanospheres, hence presenting good performance in PTT and photoacoustic imaging. This synthesis technique is promising to construct nanomaterials with desired functions for potential biomedical application by self-assembly of various nanocrystals in situ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.