Abstract
Herein, a fluorescence and surface-enhanced Raman spectroscopy dual-mode system was designed for cholesterol detection based on self-assembled plasmonic nanojunctions mediated by the competition of rhodamine 6G (R6G) and cholesterol with β-cyclodextrin modified on gold nanoparticles (HS-β-CD@Au). The fluorescence of R6G was quenched by HS-β-CD@Au due to the fluorescence resonance energy transfer effect. When cholesterol was introduced as the competitive guest, R6G in the cavities of HS-β-CD@Au was displaced to recover its fluorescence. Moreover, two of HS-β-CD@Au can be linked by one cholesterol to form a more stable 2:1 complex, and then, plasmonic nanojunctions were generated, which resulted in the increasing SERS signal of R6G. In addition, fluorescence and SERS intensity of R6G increased linearly with the increase in the cholesterol concentrations with the limits of detection of 95 and 74 nM, respectively. Furthermore, the dual-mode strategy can realize the reliable and sensitive detection of cholesterol in the serum with good accuracy, and two sets of data can mutually validate each other, which demonstrated great application prospects in the surveillance of diseases related with cholesterol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.