Abstract

We report a novel method of growing red luminescent (635 nm) Mn-doped CdS (CdS:Mn) nanoparticles capped by an inorganic shell of Mn(OH) 2. CdSO 4, Na 2S 2O 3 and Mn(NO 3) 2 were used as the precursors, and thioglycerol (C 3H 8O 2S) was employed as the capping agent and also the catalyst of the reaction. Using these materials resulted in very slow rate of the reaction and particles growth. The self-assembled one-pot process was performed at pH of 8 and Mn:Cd ratio of 10, and took about 10 days for completion. CdS:Mn nanoparticles are slowly formed in the first day of the process; however, the luminescence is weak. After 7 days, the solution turns white turbid through the formation of additional particles, which precipitate on the walls on the next day. At this stage, a relatively strong red luminescence at 635 nm appears from transparent solution of the CdS:Mn nanoparticles. The white deposit on the walls turns to dark-brown color and luminescence increases on the 9th day. Finally, the CdS:Mn nanoparticles agglomerate and precipitate out of the solution on 10th day. X-ray diffraction and optical spectroscopy showed crystalline phase CdS nanoparticles with an average size of 3.6 nm. We explain the luminescence enhancement based on the formation of a Mn(OH) 2 shell on the surface of the CdS:Mn nanoparticles during the precipitation stage. This can passivate the S dangling bonds located on the particles surface. As the surface Cd sites are previously capped with thioglycerol molecules, a complete surface passivation is achieved and results in emergence of high-intensity luminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.