Abstract

The increasing drug resistance of phytopathogenic bacteria to conventional bactericides has driven the necessity for exploring new alternatives with a lower tendency to develop bacterial resistance. Here, we report a novel cationic symmetrical peptide P5VP5 (Ac- LI V IL -NH2 that enables self-assembly to form nanoparticles with excellent thermal stability. An in vitro assay showed that P5VP5 nanoparticles exhibited excellent antibacterial activity against Xanthomonas axonopodis pv citri with a MIC value of 20 μM. Meanwhile, under an in planta condition, treatment with peptide nanoparticles demonstrated the highest ability to reduce the development of citrus canker lesions in leaves. Moreover, the nanoparticles could destroy the biofilm formation, damage the cell membranes, and affect the cell membrane permeability, ultimately leading to the death of bacteria. Taken together, these nanoparticles are a promising antibacterial agent that can be used to control citrus canker and other plant diseases caused by bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.