Abstract

We synthesized block copolymer composed of hyaluronic acid (HA) and poly( dl-lactide-co-glycolide) (PLGA) (HAbLG) for antitumor targeting. 1H NMR was employed to confirm synthesis of block copolymer. At 1H NMR study, HabLG nanoparticles showed HA intrinsic peaks only at D 2O, indicating that they contained HA as a hydrophilic outer-shell and PLGA as a inner-core. Anti-tumor activity was studied using CD44-overexpressing HCT-116 human colon carcinoma cells. Addition of doxorubicin (DOX)-incorporated nanoparticles to tumor cells resulted in the expression of a strong red fluorescence color while they expressed very weak fluorescence when CD44 receptor was blocked with free HA. Flow cytometry data also showed similar results, indicating that the fluorescence intensity of tumor cells treated with nanoparticles was significantly decreased when CD44 receptor was blocked. These results indicate that HAbLG nanoparticles were able to target CD44-overexpressing tumor cells via receptor-mediated endocytosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.