Abstract

Self-assembled nanomicelles can be used as synthetic biomaterials and colloidal carriers for poorly water-soluble drug delivery systems. Some of these micellar systems have been introduced in clinical trials and showed hopeful results relating to their therapeutic index in patients. Biodegradable nanomicelle was prepared from self-assembling amphiphilic block copolymer composed of poly(DL-lactic-co-glycolic acid) (PLGA) as a core and polyethylene glycol (PEG) as a corona. The PLGA-PEG block copolymer was first synthesized and characterized by FTIR, (1)H NMR, GPC and inherent viscosity measurements. The nanomicelle formed by PLGA-PEG block copolymer in the aqueous solution was characterized by dynamic light scattering, zeta potential, scanning electron microscopy (SEM) and fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration of obtained nanomicelle was about 0.006 mg/mL, with the size of about 160 nm and the zeta potential of -29 mV. Insulin-loaded PLGA-PEG nanomicelles were prepared by modified dialysis method and the physicochemical parameters of the micelles such as drug content, entrapment efficiency and in vitro drug release were characterized. The results showed that insulin was entrapped into PLGA-PEG nanomicelles with drug loading of 3.9 wt% and entrapment efficiency of 55 wt%. The nanomicelles containing insulin exhibited a controlled release profile. These observations suggested that the PLGA-PEG block copolymers nanomicelles have been prepared by a new synthetic route are potent nanocarrier for poorly water-soluble drugs as insulin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.