Abstract
The packing of electronic molecules into planar structures and an ensured pi-pi interaction within the plane are preferred for efficient organic transistors. Thin films of organic electronics are exemplar, but the widely adopted molecular design and associated fabrication lead to limited ordering in multistack construction motifs. Here we demonstrate self-assembled nanolayers of organic molecules having potential electronic utility using an amphiphilic silane as a building block. Unlike a cross-linked (tetrahedral) configuration found in conventional siloxane networks, a linear polymer chain is produced following silane polycondensation. As a result, hydrophobic branches plus a noncovalent pi-pi interlocking between the molecules promote planar packing and continuous stacking along the surface normal. In contrast to conventional pi-pi stacking or hydrogen bonding pathways in a fibrous construct, multistacked nanolayers with coexisting pi-pi and herringbone interlocking can provide unmatched properties and processing convenience in molecular electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.