Abstract
ZnO nanocrystals grown at relatively low temperatures using various vacuum deposition techniques can yield semiconducting thin films of self-assembled nanocolumns 20-50 nm in diameter. Such films are suitable for the fabrication of high speed and transparent thin film transistors (TFTs). Unlike amorphous TFTs, the performance of ZnO transistors depends both on the crystal quality of nanocrystals and the electrical properties of boundary layers between them. We investigated the use of radio frequency sputtering, atomic layer deposition, and pulsed laser deposition techniques to fabricate self-assembled nanocrystalline thin films and determined the influence of deposition conditions on the performance of transistors. Device design and fabrication parameters were also optimized to demonstrate TFTs with high current density and high speed performance comparable to single crystalline-based transistors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.