Abstract

AbstractDensity‐functional based calculations were used to investigate self‐assembled monolayers of different alkylphosphonic acids on corundum α‐Al2O3 (0001), bayerite β‐Al(OH)3 (001) and boehmite γ‐AlOOH (010) surface models. Mono‐, bi‐, and tridentate adsorption modes were considered. In addition, the organization of single adsorbed molecules was compared to the organization at full surface coverage. The height (thickness) of the self‐assembled monolayers is always shorter than the length of the phosphonic acid molecules due to tilting of the alkyl chains. Tilt angles at full surface coverage are very similar to the tilt angle of a single adsorbed molecule, which indicates that the density of the self‐assembled monolayers is limited by the density of adsorption sites. The lateral interactions between alkyl chains are evidenced by small torsions of the adsorbed molecules, which may serve to minimize the repulsion forces between interchain hydrogen atoms. Similar tilt angles were obtained for mono‐, bi‐, and tridentate adsorptions. Hence, the coordination mode cannot be characterized by the molecule tilting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.