Abstract
Abstract An electroactive self-assembled monolayer (SAM) was fabricated by covalent attachment of a novel hydroquinone-terminated dodecanethiol onto the gold surface and its electrochemical behavior was investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The capability of the designed SAM in immobilization of organic molecules onto the gold surface was studied utilizing the Michael-addition as a model reaction. The results obtained from cyclic voltammetry, electrochemical impedance and grazing incidence Fourier transform infrared (GI-FTIR) spectroscopy revealed that, upon applying an anodic potential to the Au-SAM electrode system in the presence of glutathione, the electrochemically generated p-quinone participated in a Michael-addition reaction with glutathione and the corresponding Michael adduct was formed at the solid–liquid interface. The kinetic parameters were then derived for this interfacial Michael-addition reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.