Abstract

The adsorption of rigid straight electrically polarized pentamers over a FCC(111) surface is studied. The model was inspired by the deposition of 2-thiophene molecules over the Au(111) surface, which was previously characterized by experimental techniques and simulated under the frame of the density functional theory. We now obtain and report the charge distribution of the molecule which allows to propose a deposition model followed by Monte Carlo simulations over an ad-hoc lattice gas model. We show that for a certain value of the chemical potential there exists an isotropic-nematic phase transition which can explain the formation of a self-assembled monolayer like the one observed in the transmission electron microscopy images. An order parameter is defined to characterize the transition which presents a step-like behavior at a critical chemical potential value. The possible nature of the nematic transition in conjunction with an ergodicity breakdown is discussed as future work by means of statistical physics techniques.

Highlights

  • The coating of materials surfaces is a standard technique widely used either to protect them or to tune specific properties or functionalities

  • The model was inspired by the deposition of 2-thiophene molecules over the Au(111) surface, which was previously characterized by experimental techniques and simulated under the frame of the density functional theory

  • This orientational phase transition is evidenced by the order parameter which jumps from δ ≈ 0.15 to d 1.0 at μ ≈ 8

Read more

Summary

April 2020

The model was inspired by the deposition of 2-thiophene molecules over the Au(111) surface, which was previously characterized by experimental techniques and simulated under the frame of the density functional theory. We obtain and report the charge distribution of the molecule which allows to propose a deposition model followed by Monte Carlo simulations over an ad-hoc lattice gas model. We show that for a certain value of the chemical potential there exists an isotropic-nematic phase transition which can explain the formation of a self-assembled monolayer like the one observed in the transmission electron microscopy images. An order parameter is defined to characterize the transition which presents a step-like behavior at a critical chemical potential value. The possible nature of the nematic transition in conjunction with an ergodicity breakdown is discussed as future work by means of statistical physics techniques

Introduction
Results
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.