Abstract

Bronchopulmonary dysplasia (BPD) is a chronic lung disease in premature infants with increased levels of reactive oxygen species (ROS) and ferroptosis. Herein, we designed a peptide-based nanoparticle to deliver therapeutic molecules to pulmonary, thereby ameliorating BPD. The BPD-induced damages of lung tissues were detected by H&E and immunohistochemistry staining. Inflammatory cytokines, Fe2+, and ROS levels were quantified by the indicated kits, respectively. The targeting relationship was verified by luciferase reporter assay and pull-down assay. Subsequently, self-assembled miR-134-5p inhibitor nanoparticles with pulmonary epithelial cell-targeting were synthesized. The characteristics were detected by transmission electron microscopy, luminescence imaging, and dynamic light scattering. A significant ferroptosis was observed in the BPD mice. The protein level of GPX4 was decreased significantly compared to the control group. Constantly, miR-134-5p showed positive regulation on ferroptosis by targeting GPX4. The designed nanoparticles were mainly accumulated in the lung region. Besides, it ameliorated experimental bronchopulmonary dysplasia via suppressing ferroptosis, in vivo and in vitro. Our findings provided a miR-134-5p/GPX4 axis in regulating ferroptosis of BPD and prompted the potential of applying the peptide-based nanoparticle to BPD treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.