Abstract

DNA programmable structures of various morphologies have attracted extensive attention due to their potential for materials science and biomedical applications. Here, we report the formation of micro-sized hexagons via assembly of only one pair of short double-stranded DNA in buffer-salt poly(ethylene glycol) solution. Each DNA strand had complementary bases with a two-base overhang. The procedure of heating and subsequent cooling of blunt-ended double-stranded DNA resulted in different assemblies. These results indicated that end-to-end adhesion at the terminals induced by complementary overhangs were required to construct the hexagonal DNA assemblies. The stable formation of the hexagons was highly dependent on heating temperature. In addition, concentration adjustments of DNA and poly(ethylene glycol) were essential. Circular dichroism spectral measurements and polarization microscopy observations indicated parallel alignment of double-stranded DNA in the hexagonal platelet. Self-assembled micro-sized hexagons composed of simple building blocks may have great potential for future biomedical device development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.