Abstract
Fully bio-based amphiphilic diblock copolymers were synthesized from hydroxypropyl methyl cellulose (HPMC) and amino-terminated poly(l-lactide) (PLLA) or poly(l-lactide-co-dl-lactide) (PLA) by reductive amination. The resulting HPMC-PLLA and HPMC-PLA copolymers with various hydrophobic block lengths were characterized by NMR, DOSY-NMR and FT-IR. Micelles were obtained by self-assembly of copolymers in aqueous medium. The micelles are spherical in shape, and the micelle size ranges from 150 to 180 nm with narrow distribution. The critical micelle concentration decreases with increasing PLA block length. Paclitaxel was loaded in micelles. Enhanced drug loading is obtained with increase of PLA block length. A biphasic release profile is observed with a burst of 40% followed by slower release up to 80%. MTT assay indicates the good cytocompatibility of HPMC-PLA micelles. SRB assay shows a significant cytotoxicity of paclitaxel-loaded micelles against SK-BR-3cells. It is thus concluded that bio-based HPMC-PLA block copolymers could be promising nano-carrier of anti-tumor drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.