Abstract

The construction of supramolecular coordination complexes (SCCs) featuring prominent cancer theranostic functions is an appealing yet significantly challenging task. In this study, we rationally designed and facilely constructed a prism-like metallacage C-DTTP with efficient fluorescence emission in the second near-infrared (NIR-II) region through the assembly of an aggregation-induced emission-active four-arm ligand with 90° Pt acceptors Pt(PEt3)2(OTf)2. C-DTTP held the longest maximum emission wavelength (1005 nm) compared with those previously reported SCCs up to now and exhibited both a high photothermal conversion efficiency (39.3%) and significantly superior reactive oxygen species generation behavior to the precursor ligand. In vitro and in vivo assessments demonstrated that the metallacage-loaded nanoparticles with excellent biocompatibility and stability were capable of simultaneously affording precise tumor diagnosis and complete tumor elimination by means of NIR-II fluorescence/photothermal dual imaging-guided photodynamic/photothermal synergistic therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call