Abstract
Quasi-two-dimensional (2D) metal molecular networks (MMNs) often exhibit a nanoconfinement effect and high degree of anisotropy, which are highly diverse in their mechanical, electronic, and magnetic functionalities. Here we report an interfacial self-assembly of mechanically robust 2D MMNs, in which 3d transition metals are interconnected via molecular thiol bridges. The Langmuir-Schäfer assembled freestanding 2D nanosheets exhibit highly desired anisotropic charge transport and spin susceptibility, in which light and magnetic field induced charge transfer regulates the electronic interactions. Meanwhile, the mechanistic studies involving electronic structure reveal the molecular metal packing structure-controlled nanoconfinement and charge transfer. This study opens the door to 2D ultrathin metal coordination nanostructures for emerging functional materials and devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.