Abstract

Self-assembly of colloidal nanoparticles (NPs) into well-defined superstructures has been recognized as one of the most promising ways to fabricate rationally-designed functional materials for a variety of applications. Introducing hierarchical mesoporosity into NP superstructures will facilitate mass transport while simultaneously enhancing the accessibility of constituent NPs, which is of critical importance for widening their applications in catalysis and energy-related fields. Herein, we develop a colloidal co-assembly strategy to construct mesostructured, carbon-coated Co0.5Fe2.5O4 NP superstructures (M-C@CFOSs), which show great promise as highly efficient electrocatalysts for the oxygen evolution reaction (OER). Specifically, organically-stabilized SiO2 NPs are employed as both building blocks and sacrificial template, which co-assemble with Co0.5Fe2.5O4 NPs to afford binary NP superstructures through a solvent drying process. M-C@CFOSs are obtainable after in situ ligand carbonization followed by the selective removal of SiO2 NPs. The hierarchical mesoporous structure of M-C@CFOSs, combined with the conformal graphitic carbon coating derived from the native organic ligands, significantly improves their electrocatalytic performance as OER electrocatalysts when compared with nonporous Co0.5Fe2.5O4 NP superstructures. This work establishes a new and facile approach for designing NP superstructures with hierarchical mesoporosity, which may find wide applications in energy storage and conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call