Abstract

Systems containing single domain magnetic particles are of great interest in view of their possible applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this work is plan-view STEM Z-contrast imaging study of the self-assembly growth of magnetic nickel nanostructures by domain matching epitaxy under Volmer–Weber (V–W) mode. The growth was carried out using pulsed laser deposition (PLD) technique with epitaxial titanium nitride film as the template, which was in turn grown on silicon (001) substrate via domain matching epitaxy. Our results show that the base of nickel islands is rectangular with the two principal edges parallel to two orthogonal 〈110〉 directions, which is [110] and [ $$\bar{1}10$$ ] for [001] oriented growth. The size distribution of the islands is relatively narrow, comparable to that obtained from self-assembled islands grown under Stranski–Krastanow (S–K) mode. A certain degree of self-organization was also found in the lateral distribution of islands: island chains were observed along the directions close to 〈011〉, which are also the edge directions. The interaction between neighboring islands through the island edge-induced strain field is believed to be responsible for the size uniformity and the lateral ordering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.