Abstract

Self-assembled (SA) layers of phosphates/silanes/thiols were applied as temporary protective films on Mg-AZ31. Retention of phosphoryl oxygen (PO) on magnesium (Mg), demonstrates dominant bidentate bonding. Distribution of the phosphate nodules are homogeneous, while silanes form island/cluster depositions, apparently sealing the pores and stabilizing the oxide of Mg. Cathodic prepolarization testifies that alkalinization can cause an additional conversion of the SA layers, increasing its protective properties. Although phosphates are with low corrosion rates, hexadecyltrimethoxysilane exhibits high corrosion impedance due to multilayer distribution. The barrier properties are better concluded by considering the resistance (Rct and R(oxi + SA)) values of impedance measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call