Abstract

Extensive resection of the small intestine leads to the development of short bowel syndrome (SBS), which reduces the effective absorptive surface area of the intestine and predisposes patients to emaciation, malnutrition, and other severe symptoms. Herein, green tea catechin (-)-epigallocatechin gallate (EGCG) and ferrous ions (Fe2+ ) are utilized to construct a nutrient carrier platform that self-assembles with nutrients to form phenolic-based nutrient complexes (PNCs). PNCs effectively prolong the residence and absorption time of nutrients in the intestine. Further this platform is applied to integrate full nutrient formula, an enteral nutrition (EN) preparation containing a range of full nutrient components. In an SBS rat model, the prepared phenolic-based integrative nutrient complexes (PINCs) enhance nutritional status, improve anemia and immune function, as well as facilitate the growth of remaining intestinal villi and crypts, and maintain the integrity of the intestinal barrier. In addition, PINCs enable the modulation of gut microbial dysbiosis, enrich the abundance of beneficial bacteria, and have no toxic effects after the long-term ingestion. These results provide a proof of principle for the use of polyphenol-based nanocomplexes as EN preparation, offering a feasible strategy for both nutritional support and therapeutic perspectives for SBS treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.