Abstract
Advanced nanomaterials integrating imaging and therapeutic modalities on a single platform offers a new horizon in current cancer treatment strategies. Recently, carbon dots (CQDs) have been successfully employed for bioimaging of cancer cells. In the present study, luminescent CQDs with anionic terminus and cationic acetylated G5 poly(amido amine) (G5-Ac85) dendrimers were combined via noncovalent interactions to form self-assembled fluorescent hybrids. The fluorescence of CQDs in hybrids is enhanced in the vicinity of primary amine groups of dendrimers, making them suitable as cellular imaging probes. Encapsulation of chemo-drug epirubicin (EPI) in the dendrimer interiors endowed the fluorescent hybrids with therapeutic potential. The in vitro release of an entrapped EPI drug from CQDs@EPI⊂G5-Ac85 hybrids was faster in an acidic environment than under physiological conditions. Herein, multifunctional CQDs@EPI⊂G5-Ac85 hybrids serve as a dual-emission delivery system, to track the intracellular distribution and cytotoxic effects of EPI drugs. Green emission properties of CQDs were used for fluorescence microscopic imaging and cellular uptake by flow cytometry. Cell cycle analysis, field-emission scanning electron microscopy (FE-SEM), reactive oxygen species (ROS) generation, and up-regulation of apoptotic signaling genes unanimously demonstrated the apoptosis inducing ability of CQDs@EPI⊂G5-Ac85 hybrids in breast cancer (MCF-7) cells. Therefore, we have evaluated CQDs@EPI⊂G5-Ac85 hybrids as prospective candidates to achieve simultaneous imaging and drug delivery in cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.