Abstract

A series of iridium- and rhodium-based hexanuclear organometallic cages containing 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone, 9,10-dihydroxy-1,4-anthraquinone, and 6,11-dihydroxynaphthacene-5,12-dione ligands were synthesized from the self-assembly of the corresponding molecular "clips" and 2,4,6-tri(4-pyridyl)-1,3,5-triazine ligands in good yields. These organometallic cages can form inclusion systems with a wide variety of π-donor substrates, including coronene, pyrene, [Pt(acac)(2)], and hexamethoxytriphenylene. The 1:1 complexation of the resulting supramolecular assemblies was confirmed by (1)H NMR spectroscopy. Large complexation shifts (Δδ>1 ppm) were observed in the (1)H NMR spectra of guests in the presence of cage [Cp*(6)M(6)(μ-DHNA)(3)(tpt)(2)](OTf)(6) (6a; M=Ir, tpt=2,4,6-tri(4-pyridyl)-1,3,5-triazine). The formation of discrete 1:1 donor-acceptor complexes, pyrene⊂6b (M=Rh), coronene⊂6a, coronene⊂6b, and [Pt(acac)(2)]⊂6a was confirmed by their single-crystal X-ray analyses. In these systems, the most important driving force for the formation of guest-host complexes is clearly the donor-acceptor π···π stacking interaction, including charge-transfer interactions between the electron-donating and electron-accepting aromatic components. These structures provide compelling evidence for the existence of strong attractive forces between the electron-deficient triazine core and electron-rich guest. The results presented here may provide useful guidance for designing artificial receptors for functional biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.