Abstract

We report on the isolation of a new family of μ-carboxylato-bridged metallocrown (MC) compounds by self-assembly of the recently isolated hexadentate tris(2-pyridylmethyl)amine ligand tpada2- incorporating two carboxylate units with metal cations. Twelve-membered MCs of manganese of the type 12-MC-3, namely, [{MnII(tpada)}3(M)(H2O)n]2+ (Mn3M) (M = Mn2+ (n = 0), Ca2+ (n = 1), or Sr2+ (n = 2)), were structurally characterized. The metallamacrocycles connectivity consisting in three -[Mn-O-C-O]- repeating units is provided by one carboxylate unit of the three tpada2- ligands, while the second carboxylate coordinated a fourth cation in the central cavity of the MC, Mn2+ or an alkaline earth metal, Ca2+ or Sr2+. Mn3Ca and {Mn3Sr}2 join the small family of heterometallic manganese-calcium complexes and even rarer manganese-strontium complexes as models of the OEC of photosystem II (PSII). A 8-MC-4 of strontium of the molecular wheel type with four -[Sr-O]- repeating unit was also isolated by self-assembly of the tpada2- ligand with Sr2+. This complex, namely, [Sr(tpada)(OH2)]4 (Sr4), does not incorporate any cation in the central cavity but instead four water molecules coordinated to each Sr2+. Electrochemical investigations coupled to UV-visible absorption and EPR spectroscopies as well as electrospray mass spectrometry reveal the stability of the 12-MC-3 tetranuclear structures in solution, both in the initial oxidation state, MnII3M, as well as in the three-electrons oxidized state, MnIII3M. Indeed, the cyclic voltammogram of all these complexes exhibits three-successive reversible oxidation waves between +0.5 and +0.9 V corresponding to the successive one-electron oxidation of the Mn(II) ion into Mn(III) of the three {Mn(tpada)} units constituting the ring, which are fully maintained after bulk electrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call