Abstract

Attempts to understand the complex 3D morphology of non-lamellar liquid-crystalline nanostructured particles, formed by the dispersion of a reversed hexagonal phase (hexosomes) and bicontinuous cubic phase (cubosomes) in water, have been limited by the lack of suitable 3D imaging techniques. Using cryo-field emission scanning electron microscopy, we show that whereas the structure of cubosomes generally reflects that anticipated from modeling approaches, hexosomes, which were previously proposed to be flat hexagonal prisms, in fact often possess a "spinning-top-like" structure, which is likely to influence their interactions with surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.