Abstract

The electrostatic interaction between the negatively charged phosphate groups of plasmid DNA and the cationic part of hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]), initiates spontaneous self-assembly to form the functional nanostructures made up of DNA and ionic liquid (IL). These functional nanostructures were demonstrated as promising synthetic nonviral vectors for the efficient bacterial pGFP gene transformation in cells. In particular, the functional nanostructures that were made up of 1 μL of IL ([Bmim][PF6]) and 1 μg of plasmid DNA can increase the transformation efficiency by 300-400% in microbial systems, without showing any toxicity for E. coli DH5α cells. (31)P nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron (XPS) spectroscopic analysis revealed that the electrostatic interaction between negatively charged phosphate oxygen and cationic Bmim(+) tends to initiate the self-assembly process. Thermogravimetric analysis of the DNA-IL functional nanostructures showed that these nanostructures consist of ∼16 wt % ionic liquid, which is considered to provide the stability to the plasmid DNA that eventually enhanced the transformation efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.