Abstract
Nanoencapsulation of lipophilic bioactive compounds in food biopolymers is important to functional beverages, but protein-based nanocapsules are unstable around the isoelectric point of protein. The objectives of this work were to study physicochemical properties of self-assembled curcumin-soluble soybean polysaccharide (SSPS) nanoparticles and evaluate the activities against proliferation of human colon HCT116 and mammary adenocarcinoma MCF-7 cancer cells before and after simulated digestions. Capsules with a hydrodynamic diameter of 200–300 nm and an encapsulation efficiency of ∼90% were self-assembled after increasing curcumin-SSPS mixture to pH 12.0 and lowering pH to 7.0. The capsule dispersions were stable at pH 2.0–7.0 and after heating at 95 °C for 1 min. No significant difference was observed for the viability of HCT 116 and MCF-7 cells challenged with 0.4, 4.0, and 40 μg/ml nanoencapsulated curcumin before and after simulated gastric and intestinal digestions. These findings may be significant to help develop functional beverages for disease prevention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.