Abstract
High-performance aqueous electrochemical energy storage technology has attracted extensive research interest due to its high safety and potential for commercialization. Herein, following the simultaneous doping-electrostatic synergistic assembly strategy, we synthesized the 2D/2D Co-doped NiMn-Layered double hydroxide (LDH)/V2CTx MXene (CNMV) composite materials that serve as advanced electrodes for aqueous energy storage devices, such as supercapacitors and zinc ion batteries (ZIBs). For supercapacitors, benefiting from the hetero ion doping effect, the as-assembled CNMV electrode exhibits a higher specific capacitance of 1005 F g−1 at a current density of 1 A g−1. For the assembled asymmetric supercapacitor (ASC) devices, a high energy density of 30.16 Wh kg−1 at 0.7 kW kg−1 was achieved. Acting as the cathode for ZIBs, CNMV exhibits a high reversible capacity of 322.7 mA h g−1 at 0.2 A g−1 after 100 cycles, and a considerable energy density of 368.7 W h kg−1 at a power density of 246 W kg−1. The battery-type transformation tothe pseudocapacitance-type CNMV electrode for the supercapacitor was demonstrated by quantitative kinetic analysis, while phase transformation and Zn2+ insertion/extraction for zinc ion storage mechanism were demonstrated by ex-situ XRD and XPS. This study provides a facile and effective approach for the design of high-performance MXene-based electrodes for aqueous electrochemical energy storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chemical Engineering Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.