Abstract

Cell sheet engineering has attracted great attention because thin layers of tissue can be easily transplanted to defect sites. Wound-dressing materials are required to support fast re-epithelization, both with keratinocytes and fibroblasts, to enhance the prognosis and therapeutic outcomes. We prepared self-assembled cell sheets composed of adipocyte-derived stem cells (ADSCs) and surface-engineered nanofibrils (NFs). NFs were surface-engineered with multilayers of gelatin so that the cell sheets could spontaneously assemble within 3 days in cell culture plates. Dorsal wounds transplanted with the cell sheets exhibited higher wound-healing rates when a high concentration of gelatin was immobilized on the surfaces of the NFs. Histochemical staining revealed that those with gelatin-immobilized NFs showed a higher expression of cytokeratin and collagen in the re-epithelized epidermis. Keratinocytic differentiation of the epidermis was molecularly evidenced by the higher expression of keratinocyte-specific genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.