Abstract

Lignin is a valuable bio-resource in the manufacturing of carbon-based functional materials, because of its large carbon content (~60%), various phenolic structural units, abundancy and sustainability. Here, we explored its use in photocatalytic and self-propelling applications. First, hydroxyl-abundant lignin-based carbon precursor particles, HCLSs, were produced by hydrothermal carbonization of lignin-based microcapsules (LCs). Then, by heating urea coated HCLSs, carbon spheres with a layer of graphitic carbon nitride (g-C3N4) were produced. The presence of surface available -OH groups on the HCLSs, were critical in the formation mechanism. Under visible-light irradiation, the photocatalytic spheres exhibited enhanced activity (49% of the model pollutant remained after 60 min, at 100 mW cm−2) and possessed a three times higher average removal rate constant compared to that of g-C3N4 powder. The g-C3N4 powder was obtained when heating urea only. Additionally, by introducing a Pt/Pd coating on only one side of the composite spheres, the spheres were made self-propelling in the presence of a fuel (H2O2). This work provides new insights into the preparation principles of lignin-based photocatalytic spheres for effective solar photocatalysis applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call